首页> 外文OA文献 >A Robust Indoor Scene Recognition Method based on Sparse Representation
【2h】

A Robust Indoor Scene Recognition Method based on Sparse Representation

机译:一种基于稀疏表示的鲁棒室内场景识别方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a robust method for scene recognition, whichleverages Convolutional Neural Networks (CNNs) features and Sparse Codingsetting by creating a new representation of indoor scenes. Although CNNs highlybenefited the fields of computer vision and pattern recognition, convolutionallayers adjust weights on a global-approach, which might lead to losingimportant local details such as objects and small structures. Our proposedscene representation relies on both: global features that mostly refers toenvironment's structure, and local features that are sparsely combined tocapture characteristics of common objects of a given scene. This newrepresentation is based on fragments of the scene and leverages featuresextracted by CNNs. The experimental evaluation shows that the resultingrepresentation outperforms previous scene recognition methods on Scene15 andMIT67 datasets, and performs competitively on SUN397, while being highly robustto perturbations in the input image such as noise and occlusion.
机译:在本文中,我们提出了一种可靠的场景识别方法,该方法通过创建室内场景的新表示来利用卷积神经网络(CNN)功能和稀疏编码设置。尽管CNN非常适合计算机视觉和模式识别领域,但是卷积层会调整全局方法的权重,这可能会导致丢失重要的局部细节,例如对象和小型结构。我们提出的场景表示既依赖于:主要指环境结构的全局特征,又与稀疏地组合起来以捕获给定场景的公共对象的特征的局部特征。此新表示基于场景片段,并利用了CNN提取的功能。实验评估表明,结果表示优于Scene15和MIT67数据集上的先前场景识别方法,并且在SUN397上具有竞争性,同时对输入图像中的干扰(例如噪声和遮挡)具有很高的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号